

1

FreeCAN

Beijer Electronics iX FreeCAN

Startup document
English

V18, 2013-09-13, uer, cbr, amr

Beijer Electronics, SUEN283 1

Foreword

This document is a startup document that describes the Beijer Electronics FreeCAN
driver in general, and some additional functionalities.

Please see this document as an addition to the driver manual. In the driver manual you
will find more detailed descriptions and some more hints.

The driver manual you will find in the driver settings in iX Developer.

Chapter 1: General descriptions about CAN

Chapter 2: Describes the basic usage of this driver by creating a simple project

Chapter 3: Explains special CAN protocol possibilities such as:
 J1939, NMEA, Simple CanOpen Slave

Chapter 4: FAQs and Hints for FreeCAN handling

Order no: SUEN283

Copyright © 2013 Beijer Electronics AB. All rights reserved.

Please read the entire installation manual prior to installing and using this equipment.
Only qualified personnel may install, operate or repair this equipment. Beijer Electronics AB, including
all its group companies, is not responsible for modified, altered or renovated equipment. Because the equipment has a wide
range of applications, users must acquire the appropriate knowledge to use the equipment properly in their specific
applications. Persons responsible for the application and the
equip-ment must themselves ensure that each application is in compliance with all relevant requirements,
standards and legislation in respect to configuration and safety. Only parts and accessories manufactured according to
specifications set by Beijer Electronics AB may be used.

BEIJER ELECTRONICS AB, INCLUDING ALL ITS GROUP COMPANIES, SHALL
NOT BE LIABLE TO ANYONE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
INSTALLATION, USE OR REPAIR OF THIS EQUIPMENT, WHETHER ARISING
IN TORT, CONTRACT, OR OTHERWISE. BUYER'S SOLE REMEDY SHALL BE
THE REPAIR, REPLACEMENT, OR REFUND OF PURCHASE PRICE, AND THE
CHOICE OF THE APPLICABLE REMEDY SHALL BEAT THE SOLE DISCRETION
OF BEIJER ELECTRONICS AB.

Foreword

Beijer Electronics, SUEN283 2

Content

1 General...3

1.1 What is CanBus? ..3

1.2 What is iX FreeCAN? ..4

2 My first iX FreeCAN project ...5

2.1 What is needed for the project?..5

2.1.1 Hardware:..5

2.1.2 Software: ...8

2.2 How should the project basically work? ..8

2.3 Create a new T7A project with demo driver ..9

2.4 Parameter Definition in *.xls File ..10

2.5 Create Parameter File in *.csv Format ...11

2.6 Installation of iXFreeCAN Driver..11

2.7 IX FreeCAN Driver Configuration ..13

2.8 iX Demo Driver Configuration ..15

2.9 Import of Tags out of *.csv Parameter File..15

2.10 iX Tag Configuration (Controller Data Exchange)..18

2.11 Connecting the Can Tags to Controls...19

2.12 Showing Can tag timeouts..19

2.13 iX Runtime ...20

2.14 Showing FreeCAN Firmware Version ...21

3 Special protocols with FreeCAN..22

3.1 J1939 ..22

3.2 NMEA 2000 ...26

3.3 Simple CANOpenslave ..27

3.3.1 Simple CanOpen slave project..27

3.3.2 Define the PDOs ...28

3.3.3 Define the SDOs ...29

3.3.4 Extending the slave with RPDOs..31

3.3.5 Extending the slave with TPDOs..32

4 FAQs and hints..33

4.1 How a taglist is handled ...33

4.2 Avoid firmware update...33

4.3 Different ways to write a CAN telegram..33

4.4 The use of scripts on FreeCAN tags...34

Content

Beijer Electronics, SUEN283 3

1 General

1.1 What is CanBus?

CAN Bus (Controller Area Network) is basically an automotive bus that was developed by
company Bosch. It’s a dual wire serial protocol that was created to reduce the huge amount of
cables in cars. The maximum data transfer rate is 1MBaud. The bus must be terminated on
each end with 120 Ohm. The international ISO No is 11898.

Topology:

General

Beijer Electronics, SUEN283 4

1.2 What is iX FreeCAN?

IX FreeCAN
=

iX Free configurable CanBus

With the FreeCAN it’s possible to connect an iX Panel to a CAN Bus system.
Therefore you need an iX Panel and a CiXFreeCAN communication module.

The CAN Bus supports a lot of different protocols.
The iX FreeCAN idea was to have one totally free and independent driver that
supports CAN on a base parameter level and not to have dozens of different iX drivers.

The FreeCAN CiX-CAN module can be connected to most CAN2.0 networks.
Its purpose is to read and collect the CAN telegrams in a receive list and to write CAN
telegrams. CAN is supported with 11 and 29 bit headers. Basic knowledge of CAN is
recommended.

Base definitions for tags (CAN parameters) are done in an MS Excel sheet,
available at support page of http://www.beijerelectronics.com/ and part of the start up guide
as well.
These definitions will be loaded into the CiX-CAN Module.

General

Beijer Electronics, SUEN283 5

2 My first iX FreeCAN project

2.1 What is needed for the project?

2.1.1 Hardware:

1. Beijer iX TxA, TxB or TxC

2. CiX-CAN module

CAN module interfaces

The CiX module has two galvanically isolated CAN interfaces, so two CAN busses can be
driven fully separated.

CAN1 / CAN2 : 2 x 9 pole SUB-JD (male)

Interface Pinning

PIN Description

2 CAN_L

3 CAN_GND

5 CAN_SHLD

7 CAN_H

My First iX FreeCAN project

Beijer Electronics, SUEN283 6

DIL switches on the base

Termination on/off for CAN1/CAN2.
Unscrew the CAN module to see the switches. Termination is off by default at delivery.

If the CiX module is the first / last device that is connected to a CAN cable, add an external
R120 resistor between H and L, or switch module termination to on.

Bus Termination for S1 (CAN1) / S2 (CAN2)

Switch1 Switch2 Switch3 Switch4 Description

off off off off Termination off

on on on on Termination on

LEDs

5 integrated LED’s showing CAN Bus state for CAN1/CAN2

LED CAN Bus State

G 1/2 R 1/2 Y Description

- - on Module is not configured or firmware is loading

on flashing flashing Module is working:
Yellow flashing: Module communicates to panel
Red flashing: Module receives CAN telegrams

- on off Error on CAN

 - means not relevant

S1 S2

My First iX FreeCAN project

Beijer Electronics, SUEN283 7

CAN cable

Termination can be switched on the base of the CAN module (see CiX-CAN module).

The length of the CAN bus cable (without repeater) depends on the baudrate.

CAN Cable length

Baudrate Max length

500k, 800k, 1M 40 m

100k, 125k, 250k 100 m

50k 500 m

20k, 10k 1000 m

Note: 1. For a basic cable connect all CAN_L (PIN2) to one wire and all
CAN_H(PIN7) to another wire.
Connecting CAN_GND (PIN3) is only needed for CAN Open.
2. Don’t connect more than 32 nodes on a CAN cable (without repeater).

3. CAN analyzer (nice to have)

This helps to see what happens on the CAN Bus.
We recommend a USB-to-CAN compact device from IXXAT.

My First iX FreeCAN project

Beijer Electronics, SUEN283 8

2.1.2 Software:

4. iX Developer V2.0 SP1 (version 2.0.463.0 or higher)

5. Installed FreeCAN _EM driver in version 5.00.36 or higher

6. iX_Can1ToCan2_T7A sample project

Download: http://www.beijerelectronics.com/

Content of the sample project:

- Folder FreeCAN_EM_V36 = FreeCAN driver in version 36(2 files)
- File Can1ToCan2.xls = Excel template (Excel 97-2003 version)
for tag definitions

2.2 How should the project basically work?

The project will send CAN telegrams in cycles (1 second) on CAN1 channel and receives
them on CAN2. For the cyclic send we use the internal iX Demo driver, as this driver has
some cyclic counter tags. CAN1 and CAN2 channels must be directly connected via CAN
cable.

Procedure:

Install two drivers in an iX project
a) DEMO driver for cyclic tag writing
b) FreeCAN driver for CAN data exchange

My First iXFreeCAN project

Beijer Electronics, SUEN283 9

2.3 Create a new T7A project with demo driver

Start iX Developer

Create a new project

Select T7A

Press Next

Select Controller brand: DEMO

Press Next

Enter a project name e.g. FreeCANTest

Select the project path

Press Finish

My First iX FreeCAN project

Beijer Electronics, SUEN283 10

2.4 Parameter Definition in *.xls File

In the sample project iX_Can1ToCan2_T7A you will find a folder named Project Files
with a file Can1ToCan2.xls.

Copy that file to the new project in its Project Files folder.

This Microsoft Excel file is used as a template definition file, where you are able to define
the access to the CAN telegrams. Basically you enter the tag name, the CAN header address
and the value bits in the data field.

See example:Can1ToCan2.xls file where already 2 Tags / CAN parameters are entered:

- 2 parameters = iX Tags defined : Can1.UWORD and Can2.UWORD
Tag.Datatype for later correct iX Datataype:
UWORD = Unsigned 16 bit value will be converted to UINT in iX

CAN header address is 0x123456 (extended 29 Bit).
- Tag Can1 works on CAN channel1
- Tag Can2 works on CAN channel2
- Timeout time is 2000 ms = 2 seconds.
- Data: First 2 bytes of CAN data (byte0 / byte 1).

The receive list can save up to 3500 CAN telegrams, meaning that 3500 different CAN-ID’s
can be saved.

My First iX FreeCAN project

Beijer Electronics, SUEN283 11

2.5 Create Parameter File in *.csv Format

Now the *.xls parametertemplate file must be saved in the format CSV (MS-DOS).

This is necessary for the iX tag import later on (2.8).

2.6 Installation of iXFreeCAN Driver

If you know that the correct driver is already installed, please continue with 2.7
Otherwise check if the driver is installed and which version.
Go to Function  Controllers. 1 Controller is already entered. (DEMO Driver).Click on Add.

My First iX FreeCAN project

Beijer Electronics, SUEN283 12

If no FreeCAN Controller can be selected you have to install the driver first.

Choose the FreeCAN_EM_Pre2.mpd from sample project iX_Can2Can_T7A\Project
Files

See if there is a FreeCAN Controller
installed

If yes go on with 2.7

Go to Screen ComboBox

Select Update Drivers

Select Update DriversFrom File

My first iX FreeCAN project

Beijer Electronics, SUEN283 13

Mark the driver and press Install

Confirm with OK, Exit, and restart iX Developer.

Note: On occurrence of problems in the FreeCAN driver installation, please make sure that

you have full administration rights on your system and that iX Developer is started in
administration mode.

2.7 IX FreeCAN Driver Configuration

Go to Function  Controllers. 1 Controller is already entered (DEMO Driver). Click on Add.

Select the FreeCAN Driver from the list.
Rename Controller1 to DEMO and the entered Controller2 to FreeCAN.

My first iX FreeCAN project

Beijer Electronics, SUEN283 14

Mark FreeCAN Controller and press Settings.

The default setting of the FreeCANdriver defines the used baud rate of 250 kbaud.
Please check that the used COM port is set to COM5 (for TxA and TxB panels; for TxC
check the settings in the device manager to get the correct COM port).

My first iX FreeCAN project

Beijer Electronics, SUEN283 15

2.8 iX Demo Driver Configuration

Mark DEMO Controller and press Settings.

For the cyclic writing on CAN1 channel the Demo driver can be used. As default the C0
Counter increments from 0 … 100 and decrements from 100 … 0.

2.9 Import of Tags out of *.csv Parameter File

Go to Functions  Tags  Import tags to [FreeCAN].

Import to the FreeCAN Controller opens the dialog Import Tags with the special FreeCAN
import format. Pressthe Browse Button:

My first iX FreeCAN project

Beijer Electronics, SUEN283 16

Select your Can2ToCan2.csv file (make sure that you have selected the correct folder)
and press Open.

If the *.csv file is a valid import file it’s possible to press Import.

My first iX FreeCAN project

Beijer Electronics, SUEN283 17

The tag tree view opens. Select All Items and press OK.

Now 4 tags/items are imported to the iX Tag Editor.

This import produces in parallel a file named taglist.lst, which is a tag reference list.
This reference list will be loaded automatically into the CAN module when the driver loads.

My first iX FreeCAN project

Hint:
Use the option ”merge“ if you import
the tags for the second time.

Beijer Electronics, SUEN283 18

2.10 iX Tag Configuration (Controller Data Exchange)

Enable the Data Exchange columns by clicking the checkbox Data Exchange.

Enter C0 (Counter Tag) in the DEMO Controller column for the tag Can1.
Then press the Direction Browse Button for tag Can1.

Set the Checkboxes: FromDEMO and ToFreeCAN.

That means that counter Tag C0 increments the value of tag Can1 in a cycle.

My first iX FreeCAN project

Beijer Electronics, SUEN283 19

2.11 Connecting the Can Tags to Controls

Place two Controls Analog Numeric on your screen and connect them with tags Can1 and
Can2. This can be done in Tag/Security.

2.12 Showing Can tag timeouts

As we remember, we gave our Can1 and Can2 tags a timeout value of 2000 ms.
Doing that, the tags will be automatically doubled on import:
1.) the value itself
2.) a so called valid bit.

After importing the *.csv parameter file we get the timeout tags: [Tag_Valid]

The valid bit returns 0 if the CAN telegram was not received on CAN bus within timeout time.
The valid bit returns 1 if the CAN telegram was received on CAN bus within timeout time.

My first iX FreeCAN project

Beijer Electronics, SUEN283 20

To visualize the timeout state you could use two controls Button with an option Dynamics
 Fill:

Enter 0 for Start and End value and change the color to red.
Enter 1 for Start and End value and change the color to green.

Now there are two coloured fields that get red, if the Can1 or Can2 tag was not received
within 2 seconds.

2.13 iX Runtime

On CAN Bus you can get the following information (Example recorded with a CAN
analyzer):

Every second a CAN telegram with header 0x123456 is written, and the value is
incremented by 1.

Example of an iX project where we see Can1 and Can2 tags.

CAN1 and CAN2 channels are connected to each other and communication works.
The incremented value of CAN1 will be transferred and will be the same at CAN2.
Also both valid bits are true = green.

My first iX FreeCAN project

Beijer Electronics, SUEN283 21

CAN1 and CAN2 channel are not connected to each other and communication does not
work.
The incremented value of CAN1 will not be transferred, and will not be the same at CAN2.
Can2 valid bit is false = red.

2.14 Showing FreeCAN Firmware Version

Change Tag1 or add a new Tag Firmware Version. Enter HV in the address column:

Add an additional Analog Numeric control on the screen and connect it to the Firmware
Version tag.

The driver will deliver a value like 2900, this means Firmware version 29.
If you want to show the basic version number (=29), switch on Scaling for the tags and
insert the value 0,01 for the tag in Gain.

The value will automatically be divided by 100:

My first iX FreeCAN project

Beijer Electronics, SUEN283 22

3 Special protocols with FreeCAN

The FreeCAN driver and module supports different Can protocols.
In the following chapter 3 different protocols are described:

Section 3.1: J1939 with FreeCAN
Section 0: NMEA 2000 with FreeCAN
Section 3.3: CanOpen with FreeCAN

3.1 J1939

J1939 is a 29bit (extended header) protocol on 250kbaud.

(Priority: 3 bits) + (reserved: 2 bits) + (PGN: 16 bits) + (SA: 8 bits)

Note:

- Bit 24: Data Page (0 for J1939)
- Bit 25: reserved (= 0)

J1939 provides many predefined tags in different variations.
There are 2 different priorities: 3 and 6.
For implementation you should have the definition sheet for J1939 parameters.
Priority, PGN and address will be entered in hexadecimal notation.

Definition:

- PGN (Parameter Group Number)
Defines the header of the CAN J1939 telegram

- SPN (Suspect Parameter Number)
Defines the different variables in the data of a telegram

- SA (Source Address)

Specifies the address of the sending CAN device. Sometimes it is called transmitter
address.

Special protocols with FreeCAN

Beijer Electronics, SUEN283 23

Example Engine Speed (like is defined by SAE1939-71 document):

Engine Speed: PGN 61444 (decimal) = 0xF004 (hexadecimal)
Used Bytes: Byte 4 + Byte 5
SPN(Suspect Parameter Number): 190

Assumed, the transmitter address= 0 and the priority =3, the header is:

Special protocols with FreeCAN

Beijer Electronics, SUEN283 24

Finally we define the tag Engine_Speed in the Excel sheet.

Hints:

1. SAE counts up from 1, we have to use byte 3 and byte 4 in the Excel sheet.
2. Resolution 0.125 rpm/bit with 0 offset.

Summary:

- Engine_speed will be the imported tag name.
- 0x0CF00400 is the CAN header adress.
- Can bus is on CAN1 plug (channel 1).
- Timeout will produce a valid bit tag =Engine_Speed_Valid on import.
- “J1939” in Protocol will fill unused data bits with 1 (default).
- Gain is 0,125 for SPN190.
- J1939 is Intel formatted, with low byte on left side (Byte 3), high on the right (Byte4).

Hint: Unknown transmit address
Now you may not know the priority or transmitter address of your J1939 producer.
In this case you only define the PGN as header and put “J1939P” in Protocol. Then the
priority and transmitter address is ignored, and the first fitting PGN is taken.

Special protocols with FreeCAN

Beijer Electronics, SUEN283 25

Hint: J1939 device alive
If you are not sure if you receive telegrams from a J1939 device, you may use the HLI
address in the iX tag definition. HLI04,1 will search for transmitter address 0x04 within 1
second timeout. This results in “1” if transmitter 0x04 sends, but results to “0” if no
telegrams within 1 second are received.
HLI22,2 will search for address 0x22 = 34 decimal with timeout 2 seconds.

Hint: DM1 telegrams
DM1 telegrams are error messages by J1939 devices.
DM1 consist of status,SPN,FMI and OC.
For each part we define a tag plus one timeout.
If status gets >0 we have an error message to record.

Special protocols with FreeCAN

Beijer Electronics, SUEN283 26

3.2 NMEA 2000

NMEA 2000 is basically J1939 using Data Page 1 instead of 0.
However it has variable definitions of its own. For this we extended the protocols.

(Priority: 3 bits) + (reserved: 2 bits) + (PGN: 16 bits) + (SA: 8 bits)

Note:

- Bit 24: Data Page (1forNMEA 2000)
- Bit 25: reserved (= 0)

There are 2 different priorities: 3 and 6.
Hence NMEA address header start with 0x19 (high priority) or 0x0D (low priority).These
bytes consist of the bits 24 to 31. The bits 29 to 31 are not part of the Bit Identifier but they
have to be added to get a full byte. The bits 29 to 31 are always 0.

There are NMEA variables that have a variable inside the data, which extends the header.
Normally this would cause a problem to separate the variables. For this we inserted a special
protocol “PROT14”. Together with the numbers 200 and 201 in a bit column in the Excel
sheet it is possible to filter the variable. The number 200 represent a 0 and the number 201
represents a 1.

Example:

With this filter applied we get the value of tag NMEAvar1 if telegram 0x19F21100 (PGN
1F211) has the value 0x20 in the first byte.

Special protocols with FreeCAN

Beijer Electronics, SUEN283 27

3.3 Simple CANOpenslave

CANOpen is a dedicated complex bus protocol. With FreeCAN we can only build a simple
CanOpen slave.
The simple CanOpen Slave functionality is supported in FreeCAN driver version 5.00.35and
CiX firmware version 29 or higher.

Simple CanOpen slave with FreeCAN driver
For first tests we build 2 iX projects to run CanOpen communication with 2 TxA panels.

- FreeCAN_08_CanOpen
 A simple CanOpen slave 7, 1 TPDO, 1 RPDO on FreeCAN driver.
 Use FreeCAN_08.EDS in folder /Project Files.

- canOpen_master_08

A CanOpen master 1 with automatic config, 1 TPDO, 1 RPDO on CanOpen driver
(Firmware CanOpenV6 needed).

Start both TxA panels together. At start the master will poll the SDO settings from slave and
start a data exchange. As we connected both iX projects to the demo driver counter, you will
see the data running.

3.3.1 Simple CanOpen slave project

With FreeCAN firmware V29 (in driver 5.00.36) we implemented a new protocol
“CanOpen”, which allows you to use the FreeCAN driver as a simple CanOpen slave.
We base this document on the FreeCAN manual (in the FreeCAN driver).
So read them first to understand the way we handle things.
Also CanOpen spec “DS401” should be known to you.

Please be aware that you use this driver on your own risk, as we did not certificate it. But it
should be good enough to meet the basic needs of a CanOpen slave communication.
If you want to use a certificated CanOpen master or slave with our panel, we offer a special
driver and firmware for it. Please contact your local Beijer dealer.

As an example we made a iX project “FreeCAN_08_CanOpen”, which allows you to make
first steps.
The SDO data for the slave have to be inserted in the Excel sheet “CanOpenSlave”(in folder:
/Project Files), so the FreeCAN module is a PREDEFINED CanOpen slave. The SDOs
cannot be loaded over CAN bus. For inserting the slave in a CanOpen system, use
FreeCAN_08.EDS in Folder /Project files.
NMT and heartbeat production/consumption is supported.

The RPDOs (input) are stored in the CAN module and can be used as read tags.
The TPDOs are written on tag change in iX project. The telegrams can be send cyclic.

Special protocols with FreeCAN

Beijer Electronics, SUEN283 28

The example project comes with a useable EDS, which allows you to build a quick
CanOpen network. You may change the Excel sheet and the EDS to your demands.
The slave number in the example project is set to 7. If you want to change it, you may
change controller setting “Can station address” in FreeCAN driver. This changes the
reaction on NMT telegram.

Change TPDO and RPDO telegram ID in the Excel sheet.
Change TPDO mapping (SDO1800,1) and RPDO mapping (SDO1A00,1)

3.3.2 Define the PDOs

The PDOs (process data objects) telegrams are the exchanged data over CanOpen (only in
Operational state).

To define the PDOs, the tags for iX program have to be defined. Set “CanOpen” in Protocol
row to mark it as CanOpen telegrams. The name extension “.BYTE” (RPDO_0_8.BYTE)
will import the tag as a INT16 tag, which is the nearest iX type to Byte.

As CanOpen defaults, the PDO IDs in CanOpen are set like this:
RPDO1 = 0x200 + Slave number
TPDO1 = 0x180 + Slave number
RPDO2 = 0x300 + Slave number
TPDO2 = 0x280 + Slave number
So here for our slave no 7 we get: RPDO1= 0x207, TPDO1=0x187

In this example we defined 1 TPDO1 and 1 RPDO1. The mapping for both is 4 tag bytes
and one doubleword (32bit) tag. Below you see the Excel setting for the 5 RPDO and 5
TPDO tags.
Here RPDO1_0_8 has a additional value tag (RPDO1_0_8_Valid) produced by the Timeout
setting. This tag can be used to test, if data over RPDO comes in.

Special protocols with FreeCAN

Beijer Electronics, SUEN283 29

3.3.3 Define the SDOs

With the definition of the SDOs the CanOpen configuration of the slave can be set. In the
Excel sheet you define the answers of the slave to the requests of the master. Therefore the
first data byte 0 holds the respond-code 0x43 = SDO respond with 4 data bytes. Byte 1 to 3
are the SDO index and subindex, inserted by the firmware, so you do not have to define it.
Byte 4 to 7 are the SDO data. Read the SDO data from right to left, as in CanOpen the data
come Intel-like, which is low, high (byte 4 is the lowest byte, byte 7 the highest).
All “not defined” SDOs are automatically denied on master request, you do not have to do
anything.
For “CanOpen” we have a special Excel sheet agreement: “1” is a fixed on bit, “0” is a fixed
off bit.
So 10010011 = 0x93 fixed.

It is important that you understand, that this slave is NOT configurable (writeable) over Can
Bus. All features are fixed in the Excel list. But the slave responds to SDO uploads. It is to
your responsibility to have SDOs and PDOs matching each other.
There are some basic SDOs, that an I/O slave have to bring along (see CanOpen DSP401).
SDO 1000,0 (Slave Type).
Read as SDO 1000, subindex 0. Here we return 0,0,0,0 which means: nothing special.

SDO 1018,0 (Manufacturer).
Here we return 01000145 which is the Beijer manufacturer code.

SDO 1800,1 (TPDO1) = 0x40000187 = TPDO1 on Canheader 0x187, no RTR
SDO 1A00,0 (TPDO1 mapping) = 0x40000105 = 5 objects in the mapping
SDO 1A00,1 (TPDO1 mapping obj1) = 0x64000108 = obj 6400 (byte input),1 with 8 bits
SDO 1A00,2 (TPDO1 mapping obj2) = 0x64000208 = obj 6400 (byte input),2 with 8 bits
SDO 1A00,3 (TPDO1 mapping obj3) = 0x64000308 = obj 6400 (byte input),3 with 8 bits
SDO 1A00,4 (TPDO1 mapping obj4) = 0x64000408 = obj 6400 (byte input),4 with 8 bits
SDO 1A00,5 (TPDO1 mapping obj5) = 0x64020520 = obj 6402 (32bit input),5 with 32 bits

SDO 1400,1 (RPDO1) = 0x40000207 = RPDO1 on Canheader 0x207, no RTR
SDO 1600,0 (RPDO1 mapping) = 0x40000105 = 5 objects in the mapping
SDO 1600,1 (RPDO1 mapping obj1) = 0x64100108 = obj 6410,1 with 8 bits
SDO 1600,2 (RPDO1 mapping obj2) = 0x64100208 = obj 6410,2 with 8 bits
SDO 1600,3 (RPDO1 mapping obj3) = 0x64100308 = obj 6410,3 with 8 bits
SDO 1600,4 (RPDO1 mapping obj4) = 0x64100408 = obj 6410,4 with 8 bits
SDO 1600,5 (RPDO1 mapping obj5) = 0x64120520 = obj 6412 (32bit output),5 with 32 bits

If the master sends SDO 1017,0 (Heartbeat producing time), the slave repeats heartbeat-
telegrams on this time rate.
If the master sends SDO 1016,1 (Heartbeat consuming time), the slave timeouts heartbeats
and turns to preoperational, if heartbeat from master timeouts.

Special protocols with FreeCAN

Beijer Electronics, SUEN283 30

Definition of the SDOs in the Excel sheet

1000,0 43,-,-,-,0,0,0,0
1018,1 43,-,-,-,45,1,0,1
1018,2 43,-,-,-,0,0,0,0
1018,3 43,-,-,-,0,0,0,0
1018,4 43,-,-,-,0,0,0,0

1800,1 43,-,-,-,87,01,0,40 TPDO1 on 187
1A00,0 43,-,-,-,05, 01,0,40 map 5 following objects
1A00,1 43,-,-,-,08,01 ,10,64 map 8 output bit
1A00,2 43,-,-,-,08,01 ,10,64 map 8 output bit
1A00,3 43,-,-,-,08,01 ,10,64 map 8 output bit
1A00,4 43,-,-,-,08,01 ,10,64 map 8 output bit
1A00,5 43,-,-,-,20,01 ,12,64 map 32 output bit

1400,1 43,-,-,-,07,02,0,40 RPDO1 on 207
1600,0 43,-,-,-,05, 01,0,40 map 5 following objects
1600,1 43,-,-,-,08,01 ,00,64 map 8 input bit
1600,2 43,-,-,-,08,01 ,00,64 map 8 input bit
1600,3 43,-,-,-,08,01 ,00,64 map 8 input bit
1600,4 43,-,-,-,08,01 ,00,64 map 8 input bit
1600,5 43,-,-,-,20,01 ,02,64 map 32 input bit

Special protocols with FreeCAN

Beijer Electronics, SUEN283 31

3.3.4 Extending the slave with RPDOs

We suppose that you want to change the slaves setting.
Let’s change it to 3 RPDOs with 8 bytes, 4 words and 2 double words.
This means, that the master sends 3 PDO telegrams to our slave.

If you change the Excel sheet, do not forget to save it as *.csv (MS-DOS) and import it to
your iX project.

RPDO1 on 0x207, RPDO2 on 0x307, RPDO3 on 0x407
Object 1 byte input = 6400
Object 2 byte input = 6401
Object 4 byte input = 6402

So the definition would be:
SDO 1400,1 (RPDO1) = 0x40000207 = RPDO1 on Canheader 0x207, no RTR
SDO 1600,0 (RPDO1 mapping) = 0x40000108 = 8 objects in the mapping
SDO 1600,1 (RPDO1 mapping obj1) = 0x64000108 = obj 6400,1 with 8 bits
SDO 1600,2 (RPDO1 mapping obj2) = 0x64000208 = obj 6400,2 with 8 bits
SDO 1600,3 (RPDO1 mapping obj3) = 0x64000308 = obj 6400,3 with 8 bits
SDO 1600,4 (RPDO1 mapping obj4) = 0x64000408 = obj 6400,4 with 8 bits
SDO 1600,5 (RPDO1 mapping obj5) = 0x64000508 = obj 6400,5 with 8 bits
SDO 1600,6 (RPDO1 mapping obj6) = 0x64000608 = obj 6400,6 with 8 bits
SDO 1600,7 (RPDO1 mapping obj7) = 0x64000708 = obj 6400,7 with 8 bits
SDO 1600,8 (RPDO1 mapping obj8) = 0x64000808 = obj 6400,8 with 8 bits

SDO 1401,1 (RPDO2) = 0x40000307 = RPDO2 on Canheader 0x307, no RTR
SDO 1601,0 (RPDO2 mapping) = 0x40000104 = 4 objects in the mapping
SDO 1601,1 (RPDO2 mapping obj1) = 0x64010108 = obj 6401,1 with 16 bits
SDO 1601,2 (RPDO2 mapping obj2) = 0x64010208 = obj 6401,2 with 16 bits
SDO 1601,3 (RPDO2 mapping obj3) = 0x64010308 = obj 6401,3 with 16 bits
SDO 1601,4 (RPDO2 mapping obj4) = 0x64010408 = obj 6401,4 with 16 bits

SDO 1402,1 (RPDO3) = 0x40000407 = RPDO3 on Canheader 0x407, no RTR
SDO 1602,0 (RPDO3 mapping) = 0x40000102 = 2 objects in the mapping
SDO 1602,1 (RPDO3 mapping obj1) = 0x64020120 = obj 6402,1 with 32 bits
SDO 1602,2 (RPDO3 mapping obj2) = 0x64020220 = obj 6402,2 with 32 bits

Special protocols with FreeCAN

Beijer Electronics, SUEN283 32

3.3.5 Extending the slave with TPDOs

A extention for TPDOs (telegrams send by slave) would be :
TPDO1 on 0x187, TPDO2 on 0x287, TPDO3 on 0x387
Object 1 byte output = 6410
Object 2 byte output = 6411
Object 4 byte output = 6412

So the definition would be:
SDO 1800,1 (TPDO1) = 0x40000187 = TPDO1 on Canheader 0x187, no RTR
SDO 1A00,0 (TPDO1 mapping) = 0x40000108 = 8 objects in the mapping
SDO 1A00,1 (TPDO1 mapping obj1) = 0x64100108 = obj 6410,1 with 8 bits
SDO 1A00,2 (TPDO1 mapping obj2) = 0x64100208 = obj 6410,2 with 8 bits
SDO 1A00,3 (TPDO1 mapping obj3) = 0x64100308 = obj 6410,3 with 8 bits
SDO 1A600,4 (TPDO1 mapping obj4) = 0x64100408 = obj 6410,4 with 8 bits
SDO 1A600,5 (TPDO1 mapping obj5) = 0x64100508 = obj 6410,5 with 8 bits
SDO 1A600,6 (TPDO1 mapping obj6) = 0x64100608 = obj 6410,6 with 8 bits
SDO 1A00,7 (TPDO1 mapping obj7) = 0x64100708 = obj 6410,7 with 8 bits
SDO 1A00,8 (TPDO1 mapping obj8) = 0x64100808 = obj 6410,8 with 8 bits

SDO 1801,1 (TPDO2) = 0x40000287 = TPDO2 on Canheader 0x287, no RTR
SDO 1A01,0 (TPDO2 mapping) = 0x40000104 = 4 objects in the mapping

SDO 1A01,1 (TPDO2 mapping obj1) = 0x64110108 = obj 6411,1 with 16 bits
SDO 1A01,2 (TPDO2 mapping obj2) = 0x64110208 = obj 6411,2 with 16 bits
SDO 1A01,3 (TPDO2 mapping obj3) = 0x64110308 = obj 6411,3 with 16 bits
SDO 1A01,4 (TPDO2 mapping obj4) = 0x64110408 = obj 6411,4 with 16 bits

SDO 1802,1 (TPDO3) = 0x40000387 = TPDO3 on Canheader 0x387, no RTR
SDO 1A02,0 (TPDO3 mapping) = 0x40000102 = 2 objects in the mapping
SDO 1A602,1 (TPDO3 mapping obj1) = 0x64120120 = obj 6412,1 with 32 bits
SDO 1A02,2 (TPDO3 mapping obj2) = 0x64120220 = obj 6412,2 with 32 bits

Hint:
If you want a TPDO to be send cyclic, set the cyclic time in row “Send Cycle[ms]”.
Example: 1000 would send the TPDO telegram every second AND every time the value
changes.
Please mind, that first send of TPDO is done on the first tag change in iX program (or a tag
write in the iX init).

Special protocols with FreeCAN

Beijer Electronics, SUEN283 33

4 FAQs and hints

4.1 How a taglist is handled

A taglist is produced, if an Excel file is imported. A taglist is a reference list, that shortens
the access to variables. Instead of “Give me address 1234 with mask 5678 on channel 1…”
we say “give me listvalue 1”. Therefore the taglist must be loaded into the CiX module
before communication starts. The driver does this automatically. Another advantage is, that
an Excel sheet gives a better overview and a lot of tags can be inserted in a project in one
step.

This is why we recommend the use of the taglist.

Another advantage is the possibility to copy the taglist.
This leads to the possibility to have identical iX projects with different taglists (but variable
names must be same!)

Example: the use of the same project for CAN device 3 or 4. Make Excel for device 3 and
import it into your project. Save taglist.lst as taglist3.lst. Then make Excel for device 4 and
import it into your project. Save taglist.lst as taglist4.lst. If you want to load device3, just
copy taglist3.lst on taglist.lst and download project. If you want to load device4, just copy
taglist4.lst on taglist.lst and download project.

4.2 Avoid firmware update

Normally the firmware is loaded from the driver at project start.
If you want to avoid this, go to the /Project Files folder of your project and insert a file
named nofirmwareload.txt without any text.
From then the driver won’t update the firmware.

Reasons for this could be the use of a special firmware or the freeze of software.

4.3 Different ways to write a CAN telegram

a) with Excel file

Every tag in Excel sheet can be written by the iX project. Normally the CAN module
takes the last received or send data and overwrites just the value.
By the use of protocol “J1939” the rest of the telegram is filled with “1”(=unused).
If a data outside the value should have other value, it is possible to force the data by
setting 100(Bit=0) or 101(Bit=1).

FAQ’s and Hints

Beijer Electronics, SUEN283 34

In row F (Send Cycle) a repetition time-value can be set. 1000 will cause a send of
the telegram every second. But the first time must be started by writing a value from
the iX program (because a value is needed). The value will be send until a new value
is written by the iX project.

a) by direct commands

Write telegram – HRA, HRB
A full telegram must be written in 2 commands.
HRA hold the left 4 data bytes, HRB holds the right 4 data bytes and sends the telegram.
HRB is the trigger to send the telegram and last content of HRA is taken.

Sends a telegram cyclic by RZ command.

Hint: the cyclic write starts after a value is written to it, then it runs cyclic. For a start in iX
write a “script.init” function and write a value to the tag by e.g. “globals.tags.setAnalog(0)”.

4.4 The use of scripts on FreeCAN tags

Tags can be read or written in scripts. But be aware, that the data flow is controlled by the
driver and there is no absolute way to force a data exchange at a certain moment. Also the
driver changes the order of write and read tags. If the order must be kept, it is necessary to
collect the script tags commands in a recipe.

Example: tag “mytag”
Read: Globals.Tags.mytag.Read();
Write: Globals.Tags.mytag.SetAnalog(0x1234);
Copy: myvar= Globals.Tags.mytag.Value;

Also the place of scripts is evident for its use.

Scripts, which are placed in Tags/scripts (e.g. in ValueChange) cause the driver to read the
tag constantly. Please be aware, that this can lead to slow data communication (if too many
tags are read).

FAQ’s and Hints

Beijer Electronics, SUEN283 35

Scripts, which are placed in buttons are only done on button event:

Please remember: Tags, that are shown in Analog Numeric, are only read on active screen.

FAQ’s and Hints

